Black November

ATÉ 50% OFF

TÁ ACABANDO!

0 dias

0 horas

0 min

0 seg

Solucionado (ver solução)
Solucionado
(ver solução)
3
respostas

Copilot Studio vs Microsoft Copilot

Insira aqui a descrição dessa imagem para ajudar na acessibilidade

Copilot Studio vs Microsoft Copilot

By Ricardo Costa Val do Rosario helped by Microsoft Copilot 365 and ChatGPT 5,0 Plus

1. Definition

1. Microsoft Copilot: AI assistant integrated into the Microsoft 365 ecosystem, which 
uses organizational data and language models to increase productivity (e.g., generating
texts, analytics, summaries).

2. Copilot Studio: Platform for creating, customizing, and managing copilots, allowing 
integration with internal systems, workflows, and company-specific data.

2. Structure

# Microsoft Copilot:
1.	Based on AI models (GPT).
2.	Integrated with Microsoft Graph and apps (Word, Excel, Teams).
3.	It works as a productivity layer.

# Copilot Studio:
1.	Low-code/no-code development interface.
2.	Connectors to APIs and internal data.
3.	Tools for customization and governance.

3. Functions

# Microsoft Copilot:
1.	Automatic redaction (Word, Outlook).
2.	Data analysis (Excel).
3.	Meeting summary (Teams).

# Copilot Studio:
1.	Creation of specific copilots for internal processes.
2.	Complex tasks automation.
3.	Integration with corporate systems.

4. Applications with Real Cases

# Microsoft Copilot:

1.	Generation of financial reports in Excel.
2.	Summary of emails and meetings for managers.

# Copilot Studio:
1.	Creation of a copilot for internal technical support.
2.	Automation of HR processes (e.g., onboarding).

5. Code Examples

- Copilot Studio allows scripts and connectors. Example in Power Automate:

# Example API call to integrate Copilot Studio
const response = await fetch("https://api.copilotstudio.com/query", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: "Generate sales report" })
});
const data = await response.json();
console.log(data.result);

6. Advantages and Disadvantages


# Microsoft Copilot
1.	Easy integration with Microsoft 365.
2.	Increases productivity without complex setup.
3.	Limited to standard application logic.
4.	Less customization.

# Copilot Studio
1.	High customization and integration with internal systems.
2.	Allows you to create process-specific copilots.
3.	It requires basic technical knowledge.
4.	Increased initial effort for setup.

7. Codes samples for Copilot Studio and Microsoft Copilot:

1. Example for Copilot Studio

- Copilot Studio allows you to create custom copilots using connectors and APIs. A
simple JavaScript example  to integrate with the Copilot Studio API:

# Example API call to integrate Copilot Studio

const response = await fetch("https://api.copilotstudio.com/query", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: "Generate sales report" })
});

const data = await response.json();
console.log(data.result);

# What does it do?
1.	Sends a prompt to the copilot via API.
2.	Receives the processed response (for example, a sales report).
3.	Can be integrated into a Power Automate flow or internal app.

2. Example for Microsoft Copilot (Excel)

Using Office Scripts to automate tasks with Copilot:
function main(workbook: ExcelScript.Workbook) {
let sheet = workbook.getActiveWorksheet();
let salesData = sheet.getRange("A1:B10").getValues();

Simulation: Send data to Copilot for analysis
console.log("Analyzing Sales Data:", salesData);

Here you could integrate with an endpoint that calls Copilot
}
What does it do?
1.	Captures data from a spreadsheet.
2.	Prepare to send to Copilot to generate insights or graphs.

3. Example with Power Automate

Creating a flow that sends data to Copilot Studio and returns a response:
{
"type": "Http",
"method": "POST",
"uri": "https://api.copilotstudio.com/query",
"headers": {
"Content-Type": "application/json"
},
"body": {
"prompt": "Summary of the week's meetings"
}
}

7. Applications of Copilot Studio in Healthcare

# Contextualization
- Copilot Studio, when contextualized for the health area, is no longer just 
an automation tool and starts to act as a clinical-operational copilot, capable 
of integrating electronic medical records, hospital  systems, care protocols, and 
administrative flows, respecting the requirements of LGPD, information security, 
and technovigilance. Below, I present three real application contexts, with respective 
examples of flows and codes,

Matricule-se agora e aproveite até 50% OFF

O maior desconto do ano para você evoluir com a maior escola de tecnologia

QUERO APROVEITAR
3 respostas

8. Intelligent Triage in Emergency Care (Copilot Studio + Power Automate)

Objective
Automate the initial screening of symptoms, prioritizing patients at high clinical risk.
    
# Operation
- The patient interacts with a copilot created in Copilot Studio, powered by:
1. Manchester Protocols
2. Clinical risk scales
3. Vital basic data (when integrated with IoMT)
4. The flow is processed via Power Automate and the result is forwarded to the electronic medical record.

# Flow in Power Automate (JSON)

{
  "type": "Http",
  "method": "POST",
  "uri": "https://api.copilotstudio.com/query",
  "headers": {
    "Content-Type": "application/json"
  },
  "body": {
    "prompt": "Patient presents chest pain, sweating, and dyspnea. Classify risk according to protocol."
  }
}
    Expected Return

# 	The copilot responds with:

1. Risk classification (e.g., Red – emergency)
2. Suggestion of care flow
3. Automatic signaling to medical staff via Teams

9. Copilot for Patient Safety and Technovigilance


- Objective: Monitor notifications of adverse events related to Smart Medical Devices (DMI).

# Clinical Application

1. Automated reading of team notifications
2. Sorting by type of event (sensor failure, algorithm error, malfunction)
3. Automatic report generation for Patient Safety Center

# API Integration Example (JavaScript)

const response = await fetch("https://api.copilotstudio.com/query", {
  method: "POST",
  headers: { "Content-Type": "application/json" },
  body: JSON.stringify({
    prompt: "Analyze infusion pump failure notification in bed 304 and generate technovigilance report."
  })
});
const data = await response.json();
console.log(data.result);
    
# Institutional Gain

1. Complete traceability
2. Reduction of underreporting
3. Direct support for medical device governance

10. Medical-Administrative Copilot for Hospital Management

- Objective: Assist managers in care and administrative decision-making.

    Sample in Microsoft Copilot with Excel (Office Scripts)
function main(workbook: ExcelScript.Workbook) {
  let sheet = workbook.getActiveWorksheet();
  let occupancy = sheet.getRange("A1:B30").getValues();

  console.log("Analyzing hospital occupancy rate:", occupancy);
}

# Practical Use

- O Microsoft Copilot:
1. Analyzes bed occupancy
2. Generates bullish forecasts
3. Suggests redistribution of human resources

11. AI-Assisted Code Governance

# 	Contextualization
1. It addresses the topic of AI-Assisted Code Governance in health solutions. 
2. When using Copilot Studio and Microsoft Copilot in the development of solutions for healthcare, 
    it is essential to adopt AI-Assisted Code Governance, which involves:

12. Principles Applied to Health:

1. Mandatory human validation of all generated code
2. Versioning and traceability of automations
3. Safety and clinical impact audit
4. Compliance with LGPD, ANVISA and ISO 62304
5. Algorithmic decision trail

# Example Governance Policy (Pseudocode)
1.	If code is AI-generated:
2.	then require mandatory human review
3.	Register Validation Author
4.	Run simulated clinical tests
5.	authorize use only after formal approval
6.	This governance is what transforms the use of copilots into ethical, safe, 
and institutionally sustainable practice in medicine.

# Technical Synthesis in Health: 

- Copilot Studio Element in Healthcare
1. Focus Clinical, administrative and technovigilance processes
2. Integration Electronic medical record, IoMT, hospital management
3. Reduced Risk with Proper GovernanceRequirement Mandatory medical and 
technical  validation
4.  Impact: Safe automation of assistance

13. Challenges

1.	Data governance and security.
2.	Training teams for effective use.
3.	Implementation and maintenance costs.

14. Future

1.	Expansion to multimodal AI integration.
2.	Greater autonomy of copilots.
3.	Advanced customization and compliance capabilities.

15. Summary Comparative Table

|  Aspect |Microsoft Copilot | Copilot Studio|

| Focus | Productivity in M365|Creating and customizing copilots |

|  Intricacy |Low    |  Average     |
|  Customization     |Limited      | Discharge   |
| Use Cases   | Writing, analysis, summary     |  Automation, integration, support |
solução!

Olá, Ricardo! Tudo bem?

Sensacional o seu conteúdo, você sempre contribuindo com o toda a comunidade, ficamos muito felizes!

Parabéns pela iniciativa de trazer não apenas a comparação técnica entre as ferramentas, mas também a aplicação prática no setor de saúde. É muito comum haver confusão entre o "assistente de produtividade" (Microsoft Copilot) e a "plataforma de construção" (Copilot Studio), e seu resumo dissipa essas dúvidas com muita clareza.

Obrigado por compartilhar esse conhecimento tão detalhado com a comunidade. Com certeza vai ajudar muitos colegas que estão navegando pelo curso de Multiagentes!

Bons estudos!

Sucesso

Imagem da comunidade

Olá Victor, muito obrigado pelas palavras que me dão a certeza de como vale a pena dedicar uma tarde inteira à criação
de artigos como este. Ao contrário do que muitos imaginam, percebo que textos feitos em parceria com a IA exigem muito
mais do autor para alcançar um documento de alta qualidade e que preserve a personalidade de quem escreve.
Abraço,
Ricardo.