space_knn = [
{
'knn__n_neighbors': Integer(5, 25),
'knn__weights': Categorical(['uniform', 'distance']),
'knn__metric': Categorical(['euclidean', 'manhattan'])
}
]
opt_knn = BayesSearchCV(Pipeline([('scaler', StandardScaler()),('knn', KNeighborsClassifier())]),
search_spaces = space_knn,
scoring = "recall",
n_jobs = -1,
cv = inner_cv,
random_state = RANDOM_STATE)
bs_knn_nested_scores = cross_val_score(opt_knn, x_treino, y_treino, cv = outer_cv)
print(f'resultado de cada iteração do cv externo: {bs_knn_nested_scores}')
print(f'média: {bs_knn_nested_scores.mean()}')
opt_knn.fit(x_treino, y_treino)
opt_knn.best_params_