Ainda nesse tema a qustao para ter uma resposta é a definiçao das probabilidades. Como isso é feito ja que a partida é o estado atual? como posso indicar uma probalilidade para o futuro ja que dados preteritos nao estram na equacao?
Ainda nesse tema a qustao para ter uma resposta é a definiçao das probabilidades. Como isso é feito ja que a partida é o estado atual? como posso indicar uma probalilidade para o futuro ja que dados preteritos nao estram na equacao?
Oi, Raul! Como vai?
Agradeço por compartilhar sua dúvida com a comunidade Alura.
Sua pergunta faz muito sentido! Em uma Cadeia de Markov, realmente trabalhamos com a ideia de que o próximo estado depende apenas do estado atual, não dos anteriores. Isso é conhecido como a propriedade de Markov.
As probabilidades de transição são definidas com base em observações, dados históricos ou conhecimento prévio sobre o sistema. Mesmo que o modelo olhe só para o presente para decidir o futuro, essas probabilidades precisam ser configuradas a partir de uma análise prévia.
Veja um exemplo simples de matriz de transição para um clima:
Estados: Sol, Nublado, Chuva
Sol | Nublado | Chuva | |
---|---|---|---|
Sol | 0.6 | 0.3 | 0.1 |
Nublado | 0.2 | 0.5 | 0.3 |
Chuva | 0.3 | 0.4 | 0.3 |
Isso significa, por exemplo, que se hoje está Sol, há 60% de chance de amanhã também ser Sol, 30% de chance de ficar nublado e 10% de chover.
Essas probabilidades vêm da análise de padrões históricos, ou seja, você observa como os estados costumam mudar na vida real e então monta a matriz de transição.
Mesmo que os dados passados não entrem diretamente no cálculo da previsão em tempo real, eles são fundamentais para construir a matriz de transição que o modelo usa.
Espero ter ajudado. Conte com o apoio do Fórum na sua jornada. Fico à disposição.
Abraços e bons estudos!
Caso este post tenha lhe ajudado, por favor, marcar como solucionado